1

Daten,
Daten,
Daten

und kein Ende?

Dr. Peter Leinen

Deutsche Nationalbibliothek

Daten, Daten und kein Ende?

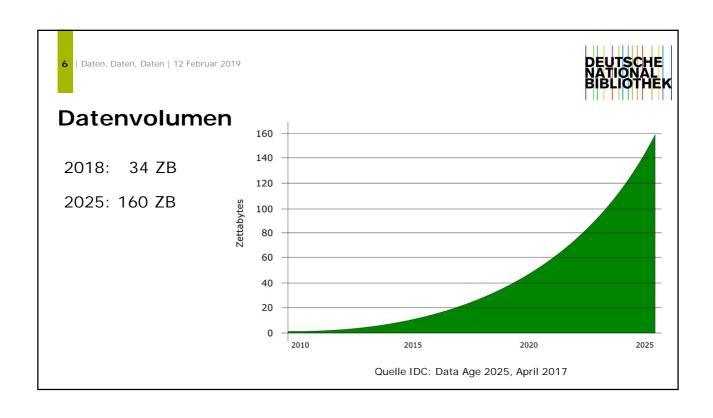
oder

Die unendlichen Weiten des Datenuniversums

... eintauchen die schier unendlichen Weiten

- der Datenwelt, die
 - von einer reinen Geschäftsgrundlage zu einer kritischen Größe in unserem Leben geworden ist
 - immer neue Rekorde bricht
 - immer neue Datenquellen integriert
 - immer mehr Speicherplatz erfordert

4 | Daten, Daten, Daten | 12 Februar 2019


Gliederung

- Allgemeine Entwicklung
- Auftrag der Deutschen Nationalbibliothek
- Speichertechnologien an der Deutschen Nationalbibliothek

Entwicklung

- Vor 1980: Mainframe Ära
 - Datenspeicher und Rechenleistung ausschließlich in Datenzentren
 - Datensilos, Rechenleistung steht im Vordergrund
- 1980 2000: PC Ära
 - Daten und Rechenleistung werden dezentralisiert
- ab 2000: Cloudzeitalter
 - Daten stehen im Vordergrund, Vernetzung der Daten
 - Zugriff überall und immer
 - Grundlage: Netzwerke

Größenordnungen

Einheit			Faktor
1 KB	Kilobyte	1.000 Bytes	1000
1 MB	Megabyte	1.000.000 Bytes	1000 ²
1 TB	Terabyte	1.000.000.000 Bytes	10003
1 PB	Petabyte	1.000.000.000.000 Bytes	10004
1 EB	Exabyte		10005
1 ZB	Zettabyte		10006
1 YB	Yottabyte		1000 ⁷

Unterschied: 1 KiB = 1024 B, 1 TiB = 1024 MiB = 1024^2 B

8 | Daten, Daten, Daten | 12 Februar 2019

Fragen

- Wo entstehen diese Datenmengen?
- Wo werden diese gespeichert?
- Welche Technologien werden hierzu benutzt?

Beispiel: Large Hadron Collider (LHC)

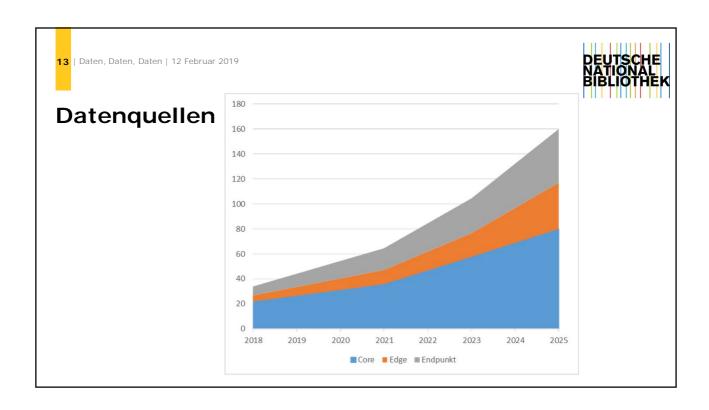
- Teilchenbeschleuniger am Kernforschungszentrum CERN
 - Erzeugung und genaue Untersuchung von Elementarteilchen
- Datenverarbeitung
 - mehr als 99% Messungen (Standardsignaturen) werden gleich verworfen
 - "nur" 200 Messwerte pro Sekunde werden weitergeleitet
 - Datenproduktion: 25 PB / Jahr

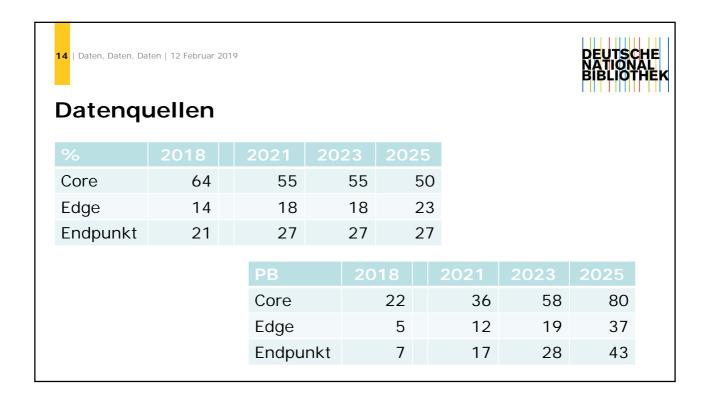
10 | Daten, Daten, Daten | 12 Februar 2019

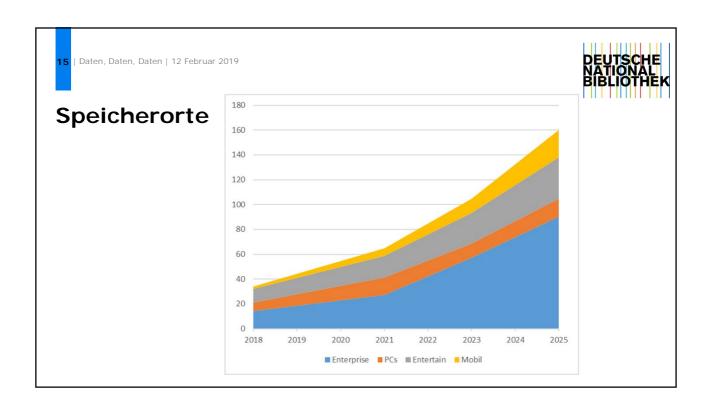
Beispiel: Large Hadron Collider (LHC)

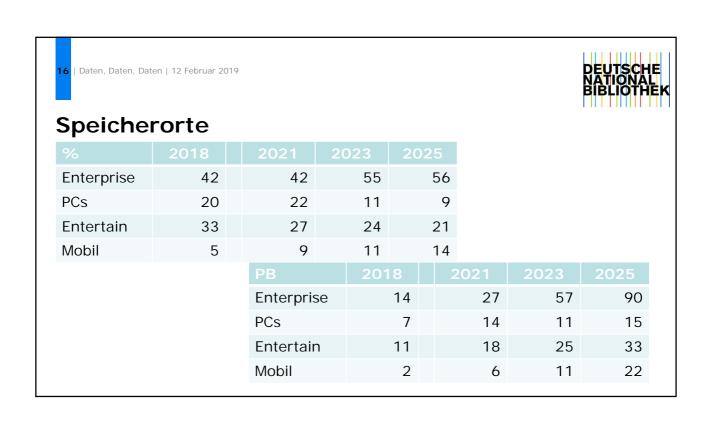
- LHC Computing Grid
 - Netz von Einrichtungen zur Speicherung und Prozessierung
- Tier-0: CERN
 - Backup auf Tape
 - Verarbeitung mit 6000 CPUs, 5.5 PB Festplatte, 17 PB Tape
- Tier-1: 13 weltweit
 - Großforschungseinrichtungen (KIT Karlsruhe)
 - jeweils 2000 CPUs, 1 PB Festplatte, 10 PB Tape

Beispiel: Large Hadron Collider (LHC)

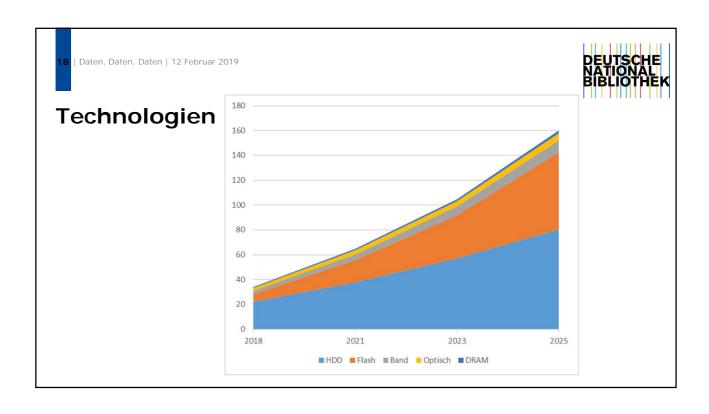

- Tier-2: 155 weltweit
 - Universitäten, Forschungseinrichtungen
 - spezielle Auswertungen
- Tier-3, Tier-4:
 - Forschergruppen


12 | Daten, Daten, Daten | 12 Februar 2019

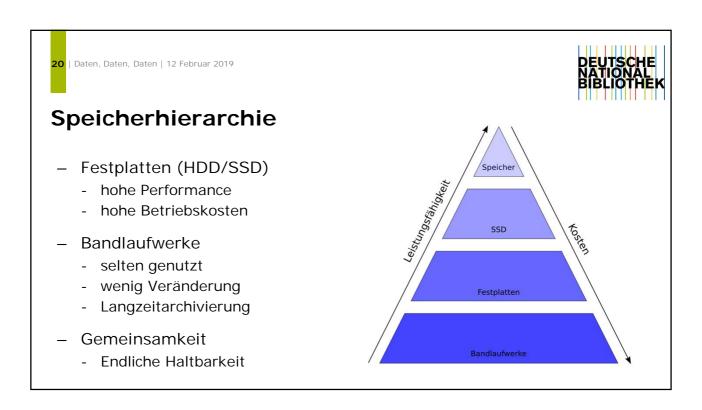



Datenquellen

- Zentral (Core)
 - Große Datenzentren
- Endpunkte
 - PCs, Telefone, Kameras
 - Fahrzeuge, Sensoren
- Edge
 - Außenstellen, Netzwerkserver
 - Verbindung zwischen Zentral und Endpunkten



Technologien


%	2018	2021	2023	2025
HDD	66	59	55	50
Flash	17	27	33	39
Band	8	7	7	6
Optisch	7	5	4	4
DRAM	1	1	1	1

Technologien

РВ	2018	2021	2023	2025
HDD	22	38	57	80
Flash	6	18	34	62
Band	3	5	7	10
Optisch	2	4	4	6
DRAM	0,4	1	1	2

Quelle

Data Age 2025: The Evolution of Data to Life-Critical

https://www.seagate.com/files/www-content/our-story/trends/files/Seagate-WP-DataAge2025-March-2017.pdf

22 | Daten, Daten, Daten | 12 Februar 2019

Deutsche Nationalbibliothek

- Aufgaben
- Digitaler Wandel
- Anforderungen

Deutsche Nationalbibliothek

- Archivbibliothek mit der Aufgabe,
 - die in Deutschland ab 1913 veröffentlichten Medienwerke,
 - im Ausland veröffentlichten deutschsprachigen Medienwerke, Übersetzungen deutschsprachiger Medienwerke in andere Sprachen und fremdsprachige Medienwerke über Deutschland
 - die zwischen 1933 und 1945 erschienenen Werke deutschsprachiger Emigranten

zu sammeln, dauerhaft zu archivieren, bibliografisch zu verzeichnen sowie der Öffentlichkeit zur Verfügung zu stellen.

24 | Daten, Daten, Daten | 12 Februar 2019

Deutsche Nationalbibliothek

- 2006: DNB-Gesetz
 - Umbenennung in Deutsche Nationalbibliothek
 - Ausweitung Sammelauftrag auf Netzpublikationen
- Netzpublikationen (Online-Publikationen)
 - E-Books, elektronische Zeitschriften
 - Hörbücher
 - Webseiten

Bestand am 1.1.2019

- Ca. 30 Mio. physische Medien:
 - Bücher, Zeitschriften, Dissertationen, Karten, Musikalien, Tonträger
- Ca. 5.9 Mio. digitale Medien (NP):
 - E-Books, E-Journals, E-Papers, Books on Demand (BoD),
 - digitale Musiknoten, Audio-Books als Audiofiles,
 - Webseiten
- Platz
 - 380 Regalkilometer
 - 90 TB

26 | Daten, Daten, Daten | 12 Februar 2019

Bestand am 1.1.2019

- Netzpublikationen im Einzelnen

960.000 E-Books

620.000 BoD-Titel

230.000 Online-Dissertationen

1.900.000 E-Journal-Ausgaben (7.500 Titel, 7.300 laufend)

2.100.000 E-Paper-Ausgaben (1.450 Titel, 1.300 laufend)

6.200 Digitale Musiknoten

26.000 Audio-Books als Audiofiles

17.400 "Zeitschnitte" von 3047 Websites

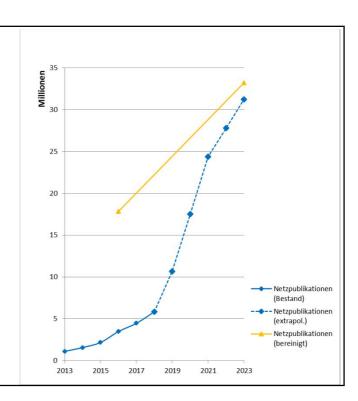
Gesamt: 5.900.000

Zugang

2017

- Digital: 982.102

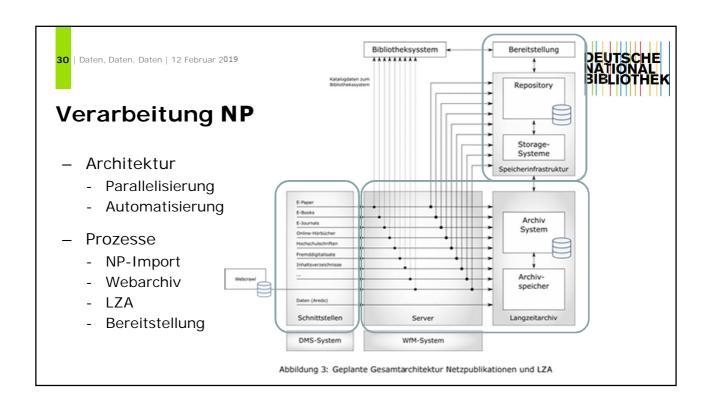
2018

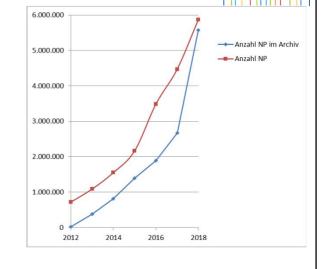

- Digital: 1.399.999

Bis zu 6.000 Objekte pro Tag über diverse Schnittstellen

28 | Daten, Daten, Daten | 12 Februar 2019

IT-Strategie


- Netzpublikationen
 - Rückstand 15 Mio. NP
 - Neu 2 bis 3 Mio./Jahr
- Perspektive 2023:
 - 32 Mio. NP
 - ~ 1 PB Speicher
- Herausforderungen
 - Webarchivierung
 - Digitale Musik


Webarchivierung

- Archivierung "Deutsches Internet"
- ".de-crawl" in 2014
 - 6 Mio. Websites
 - 2,5 Mrd. Dateien
 - 120 TB
- 16 Mio. Websites mit Endung ".de"
- Repräsentativität
 - 250 TB/Jahr

Langzeitarchivierung

- Stand
 - Zertifiziert
 - Nestor
 - Data Seal of Approval
 - Kooperation mit GWDG
 - Neue Systemsoftware 10.2017
- Zahlen ohne
 - Digitalisate
 - Webarchiv

GWDG: Gesellschaft für Wissenschaftliche Datenverarbeitung Göttingen

32 | Daten, Daten, Daten | 12 Februar 2019

Digitale Objekte

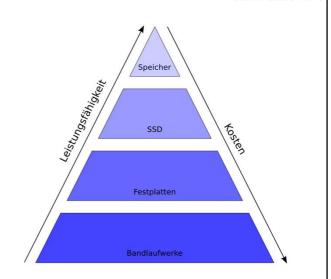
- Bereitstellung
 - Lesesaal
 - Text- und Datamining
 - sekundärer Speicher
 - 2-fach redundant
- Langzeitarchivierung
 - primärer Speicher
 - 3-fach redundant
 - dunkles Archiv
 - Erhaltungsprozesse

Bandlaufwerke

- LTO-8
 - unkomprimiert:
 - 12,8 TB/Band
 - 472 MB/s
 - komprimiert:
 - 32 TB/Band
 - 1180 MB/s
- -Bedarf DNB
 - 90 240 Bänder

Bildquelle: GWDG

34 | Daten, Daten, Daten | 12 Februar 2019


Bandlaufwerke

- LTO-10
 - unkomprimiert:
 - 48 TB/Band
 - komprimiert:
 - 120 TB/Band
- Verdopplung der Kapazität
 - alle 2 bis 3 Jahre

Speichertechnologien

- Bereitstellung
 - Festplattenbasiert
 - lokaler Cache des LZA
- Langzeitarchiv
 - Bandlaufwerke
 - GWDG in Göttingen

36 | Daten, Daten, Daten | 12 Februar 2019

Strategie der DNB

- Bereitstellung
 - häufig benötigte Objekte im direkten Zugriff
 - Speicherung an beiden Standorten
 - Speicherung auf Festplatten (HDD/SSD)
- Langzeitarchivierung
 - Speicherung durch Dienstleister
 - Bandlaufwerke aus Kostengründen
 - örtliche Redundanz